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For a given scalar partial differential equation (PDE), a potential variable can be introduced

through a conservation law. Such a conservation law yields an equivalent system (potential

system) of PDEs with the given dependent variable and the potential variable as its dependent

variables. Often there is also another equivalent scalar PDE (potential equation) with the

potential variable as its dependent variable. The Nonclassical Method for obtaining solutions

of PDEs is a generalization of the Classical Method for obtaining invariant solutions from

point symmetries admitted by a given PDE. As a prototypical example, the nonlinear heat

conduction equation is used to demonstrate that the Nonclassical Method applied to a

potential equation can yield new solutions (nonclassical potential solutions) of a given PDE

that are unobtainable as invariant solutions from admitted point symmetries of the given

PDE, a related potential system or the potential equation, or from nonclassical solutions

generated by applying the Nonclassical Method (τ≡ 1) to the given scalar PDE.

1 Introduction

Suppose a given scalar partial differential equation (PDE) of second order

F(x, t, u, ux, ut, uxx, uxt, utt) = 0, (1.1)

where the subscripts denote the partial derivatives of u, can be written as a conservation

law

F(x, t, u, ux, ut, uxx, uxt, utt) =
D

Dx
f(x, t, u, ux, ut) − D

Dt
g(x, t, u, ux, ut) = 0 (1.2)

for some functions f and g of the indicated arguments. Here, D
Dx

and D
Dt

are total derivative

operators defined by

D

Dx
=

∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ · · · ,

D

Dt
=

∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ · · · . (1.3)



240 G. W. Bluman and Z. Yan

Through the conservation law (1.2) one can introduce an auxiliary potential variable v

and form an auxiliary potential system

vt = f(x, t, u, ux, ut), (1.4a)

vx = g(x, t, u, ux, ut). (1.4b)

For many physical equations one can eliminate u from the potential system (1.4a,b)

and form an auxiliary potential equation

G(x, t, v, vx, vt, vxx, vxt, vtt) = 0 (1.5)

for some function G of the indicated arguments.

In principle, one has a related potential equation (1.5) if any of the following three

conditions holds:

(1)
(

∂f
∂ux

)2

+
(

∂f
∂ut

)2

= 0;

(2)
(

∂g
∂ux

)2

+
(

∂g
∂ut

)2

= 0;

(3) ∂f
∂u

= ∂g
∂u

= 0.

Proposition 1.1 The given scalar PDE (1.2) and the potential system (1.4a,b) are equivalent.

If the potential equation (1.5) exists, then the systems of PDEs (1.2), (1.4) and (1.5) are

equivalent.

Proof (Ia) If u= θ(x, t) solves (1.2), then from the integrability condition associated with

(1.4a,b), vxt = vtx, it follows that there exists a corresponding solution (u, v) = (θ(x, t), φ(x, t))

of system (1.4a,b). Moreover φ(x, t) is unique to within an arbitrary constant.

(Ib) If (u, v) = (θ(x, t), φ(x, t)) solves (1.4a,b), then u= θ(x, t) solves (1.2).

Now assume that the potential equation (1.5) exists.

(IIa) If (u, v) = (θ(x, t), φ(x, t)) solves (1.4a,b), then v=φ(x, t) solves (1.5).

(IIb) If v=φ(x, t) solves (1.5), then from the definition of (1.4a,b), it follows that there

exists some u= θ(x, t) such that (u, v) = (θ(x, t), φ(x, t)) solves (1.4a,b).

The statements Iab and IIab lead to:

(IIIa) If u= θ(x, t) solves (1.2), then to within an arbitrary constant there corresponds a

solution v=φ(x, t) of (1.5), from the integrability condition associated with (1.4a,b).

(IIIb) If v=φ(x, t) solves (1.5), then through IIb there exists u= θ(x, t) solving (1.2). �

In the important special case where g(x, t, u, ux, ut) = u, i.e. PDE (1.2) is of the form

ut =
D
Dx

f(x, t, u, ux, ut), one has θ(x, t) =φx(x, t) in IIb and IIIb.



Nonclassical potential solutions of partial differential equations 241

1.1 The classical method: invariant solutions arising from admitted point symmetries

A point symmetry

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
(1.6)

is admitted by (1.2) if and only if

[
X(2)(F)

]∣∣
F=0

= 0, (1.7)

where the second extension of X is given by

X(2) = X + ηx
∂

∂ux
+ ηt

∂

∂ut
+ ηxt

∂

∂uxt
+ ηtt

∂

∂utt
+ ηxx

∂

∂uxx
(1.8)

with

ηx =
Dη

Dx
− Dξ

Dx
ux − Dτ

Dx
ut, ηt =

Dη

Dt
− Dξ

Dt
ux − Dτ

Dt
ut,

ηxt =
Dηt

Dx
− Dξ

Dx
uxt − Dτ

Dx
utt =

Dηx

Dt
− Dξ

Dt
uxx − Dτ

Dt
uxt,

ηtt =
Dηt

Dt
− Dξ

Dt
uxt − Dτ

Dt
utt, ηxx =

Dηx

Dx
− Dξ

Dx
uxx − Dτ

Dx
uxt. (1.9)

Similarly, a point symmetry

X = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ η(x, t, u, v)

∂

∂u
+ ζ(x, t, u, v)

∂

∂v
(1.10)

is admitted by (1.4) if and only if for the corresponding first extension X(1) of (1.10), we

have [
X(1)(vt − f)

]∣∣
(vt,vx)=(f,g)

= 0,

[
X(1)(vx − g)

]∣∣
(vt,vx)=(f,g)

= 0;

(1.11)

a point symmetry

X = ξ(x, t, v)
∂

∂x
+ τ(x, t, v)

∂

∂t
+ ζ(x, t, v)

∂

∂v
(1.12)

is admitted by (1.5) if and only if for the corresponding second extension X(2) of (1.12),

we have [
X(2)(G)

]∣∣
G=0

= 0. (1.13)

For details, see Bluman & Cole [6], Ovsiannikov [17], Olver [16], Bluman & Kumei [7]

and Bluman & Anco [4].

Note that a point symmetry of the form (1.10) yields a nonlocal symmetry (potential

symmetry) of the given PDE (1.2) if ξ2
v + τ2

v + η2
v � 0; a point symmetry of the form (1.12)

yields a nonlocal symmetry (potential symmetry) of (1.2) if ξ2
v + τ2

v � 0 [7].

A point symmetry X admitted by a system of PDEs maps solutions into other solutions

of the same system. A solution which maps into itself is called an invariant solution.
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An invariant solution u = θ(x, t) of PDE (1.2) satisfies the invariant surface condition

[X(u − θ(x, t))]|u=θ(x,t) = 0, (1.14)

i.e.

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u) (1.15)

as well as PDE (1.2).

The general solution of the characteristic equations corresponding to the first order

scalar PDE (1.15) can be represented in the form

z(x, t, u) = const = c1 (similarity variable), (1.16a)

W (x, t, u) = const = c2 = w(z), (1.16b)

yielding an ansatz

u = Φ(x, t, w(z(x, t, u))) (1.17)

for solutions of (1.2), after in principle solving (1.16b) in terms of u. For a given point

symmetry X (1.6) of PDE (1.2), the dependence of Φ on x, t and w(z) is explicit in (1.17);

w(z) is an arbitrary function of the similarity variable z. The substitution of (1.17) into

(1.2) leads to a reduced ODE of order at most two with independent variable z and

dependent variable w. Note that zu = 0 if and only if τ= 0 or ∂
∂u

( ξ
τ
) = 0.

In the case of the potential system (1.4a,b), an admitted point symmetry X given

by (1.10) yields invariant solutions (u, v) = (θ(x, t), φ(x, t)) satisfying the invariant surface

conditions

[X(u − θ(x, t))]|(u,v)=(θ(x,t),φ(x,t)) = 0,

[X(v − φ(x, t))]|(u,v)=(θ(x,t),φ(x,t)) = 0,
(1.18)

i.e.

ξ(x, t, u, v)ux + τ(x, t, u, v)ut = η(x, t, u, v),
(1.19)

ξ(x, t, u, v)vx + τ(x, t, u, v)vt = ζ(x, t, u, v)

as well as satisfying system (1.4a,b).

The general solution of the characteristic equations corresponding to (1.19) can be

represented in the form

z(x, t, u, v) = const = c1 (similarity variable), (1.20a)

W1(x, t, u, v) = const = c2 = w1(z), (1.20b)

W2(x, t, u, v) = const = c3 = w2(z), (1.20c)

yielding the ansatz

u = Φ(x, t, w1(z(x, t, u, v)), w2(z(x, t, u, v))), (1.21a)

v = Ψ (x, t, w1(z(x, t, u, v)), w2(z(x, t, u, v))), (1.21b)
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for solutions of the potential system (1.4a,b), after in principle solving (1.20b,c) in terms of

u and v. For a given point symmetry X (1.10) of potential system (1.4a,b), the dependence

of Φ and Ψ on x, t, w1(z) and w2(z) is explicit in (1.21a,b); w1(z) and w2(z) are both

arbitrary functions of the similarity variable z. The substitution of (1.21a,b) into (1.4a,b)

leads to a reduced system of ODEs with independent variable z and dependent variables

w1(z) and w2(z). [Note that zu = zv = 0 if and only if τ= 0 or ∂
∂u

( ξ
τ
) = ∂

∂v
( ξ
τ
) = 0.] In

particular, we end up with a solution of the form u=Φ(x, t, w1(z), w2(z)) of PDE (1.2)

with wi(z) =wi(z(x, t, u, v)), i= 1, 2.

In the case of the potential equation (1.5), similar to the situation for the given scalar

PDE (1.2), an admitted point symmetry X given by (1.12) yields invariant solutions

v=φ(x, t) of the potential equation (1.5) that satisfy the invariant surface condition

[X(v − φ(x, t))]
∣∣
v=φ(x,t)

= 0, (1.22)

i.e.

ξ(x, t, v)vx + τ(x, t, v)vt = ζ(x, t, v) (1.23)

as well as satisfying (1.5).

The general solution of the characteristic equations corresponding to (1.23) can be

represented by

z(x, t, v) = const = c1 (similarity variable), (1.24a)

W (x, t, v) = const = c2 = w1(z), (1.24b)

yielding an ansatz

v = Ψ (x, t, w1(z(x, t, v))) (1.25)

for solutions to (1.5), after in principle solving (1.24b) in terms of v. For a given point

symmetry X (1.12) of potential equation (1.5), the dependence of Ψ on x, t and w1(z) is

explicit in (1.25); w1(z) is an arbitrary function of the similarity variable z. The substitution

of (1.25) into (1.5) leads to a reduced ODE of order at most two with independent variable

z and dependent variable w1. Note that zv = 0 if and only if τ= 0 or ∂
∂v

( ξ
τ
) = 0.

In the important special case where g(x, t, u, ux, ut) = u, i.e. PDE (1.2) is of the form

ut =
D
Dx
f(x, t, u, ux, ut), the ansatz (1.25) yields a solution of PDE (1.2) of the form

u = vx =
F1(x, t, w1(z)) + w2(z)F2(x, t, w1(z))

1 + w2(z)F3(x, t, w1(z))
(1.26)

in terms of explicit functions

F1 = Ψx, F2 = zxΨw1
, F3 = −zvΨw1

, w2(z) =
dw1(z)

dz
. (1.27)

Note that F3 = 0 if zv = 0; F2 = 0 if zx = 0.
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1.2 The nonclassical method: solutions arising from admitted nonclassical symmetries

The algorithmic Nonclassical Method, introduced in Bluman & Cole [5], generalizes

and includes the Classical Method for obtaining solutions of PDEs. Here we seek all

(ξ(x, t, u), τ(x, t, u), η(x, t, u)) so that (1.6) is a symmetry (nonclassical symmetry) that leaves

invariant the augmented system consisting of (1.2), (1.15) and differential consequences of

(1.15). From the discussion of the Classical Method in § 1.1, it follows that the Nonclassical

Method yields all solutions of PDE (1.2) of the form u=Φ(x, t, w(z(x, t, u))) where w(z)

satisfies a reduced ODE.

From the nature of the invariant surface condition (1.15), without loss of generality,

two cases arise: τ≡ 1; τ≡ 0, ξ ≡ 1. Equation (1.15), and its differential consequences,

introduce additional relationships between the derivatives of u beyond those used to

find the point symmetries of PDE (1.2). For any choice of (ξ(x, t, u), τ(x, t, u), η(x, t, u)),

(1.6) leaves invariant (1.15) [14]. Consequently, the solutions of PDE (1.2), arising from

the nonclassical symmetries of the augmented system, include all invariant solutions of

(1.2) arising from the point symmetries of (1.2). One can show that the compatibility of

the completely augmented system consisting of the given PDE (1.2), the invariant surface

condition (1.15), and the differential consequences of both (1.2) and (1.15), leads to

the determining equations of the Nonclassical Method (when applied to the completely

augmented system) for (ξ(x, t, u), τ(x, t, u), η(x, t, u)).

Definition 1.2 A solution of PDE (1.2) is called a nonclassical solution of (1.2) if it is

obtained by the Nonclassical Method and is not an invariant solution arising from an

admitted point symmetry of (1.2).

1.3 Extensions of the nonclassical method: solutions arising from admitted nonclassical

potential symmetries

We now introduce two algorithms which extend the Nonclassical Method to a potential

system (1.4a,b) or a potential equation (1.5).

1.3.1 Algorithm I (Potential system approach)

Here we seek all (ξ(x, t, u, v), τ(x, t, u, v), η(x, t, u, v), ζ(x, t, u, v)) so that (1.10) is a sym-

metry (nonclassical potential symmetry of the given PDE (1.2)) that leaves invariant

the augmented system consisting of (1.4a,b), (1.19) and differential consequences of

(1.19). From the discussion of the Classical Method in § 1.1, it follows that we ob-

tain solutions of system (1.4a,b) of the form (u, v) = (Φ(x, t, w1(z(x, t, u, v)), w2(z(x, t, u, v))),

Ψ (x, t, w1(z(x, t, u, v)), w2(z(x, t, u, v)))) where w1(z) and w2(z) satisfy a reduced system of

ODEs. (Note that if ξ2
v + τ2

v + η2
v ≡ 0, then no new solutions of PDE (1.2) are found,

i.e. all such solutions of (1.2) are obtained from the Nonclassical Method applied to

PDE (1.2).)

From the nature of the invariant surface conditions (1.19), without loss of general-

ity, two cases arise: τ≡ 1; τ≡ 0, ξ ≡ 1. System (1.19), and its differential consequences,

introduce additional relationships between the derivatives of u and v beyond those

used to find the point symmetries of potential system (1.4a,b). For any choice of
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(ξ(x, t, u, v), τ(x, t, u, v), η(x, t, u, v), ζ(x, t, u, v)), (1.10) leaves invariant (1.19). Consequently,

the solutions of potential system (1.4a,b), arising from the nonclassical symmetries of the

augmented system, include all invariant solutions of (1.4a,b) that arise from the point

symmetries of potential system (1.4a,b). One can show that the compatibility of the

completely augmented system consisting of the potential system (1.4a,b), the invariant

surface conditions (1.19), and the differential consequences of both (1.4a,b) and (1.19),

leads to the determining equations of the Nonclassical Method (when applied to the

completely augmented system) for (ξ(x, t, u, v), τ(x, t, u, v), η(x, t, u, v), ζ(x, t, u, v)).

1.3.2 Algorithm II (Potential equation approach)

Here we seek all (ξ(x, t, v), τ(x, t, v), ζ(x, t, v)) so that (1.12) is a symmetry (nonclassical

potential symmetry of the given PDE (1.2)) that leaves invariant the augmented system

consisting of the potential equation (1.5), the invariant surface condition (1.23), and

differential consequences of (1.23). From the discussion in § 1.1, it follows that we obtain

solutions of the given scalar PDE (1.2) related to all solutions of the potential equation (1.5)

of the form v=Ψ (x, t, w1(z(x, t, v))) where w1(z) satisfies a reduced ODE. (In the important

special case where g(x, t, u, ux, ut) = u, i.e. PDE (1.2) is of the form ut =
D
Dx

f(x, t, u, ux, ut),

the corresponding solutions of ut =
Df
Dx

are given by (1.26) and (1.27). Even if ξ2
v + τ2

v ≡ 0,

i.e. zv = 0, we could obtain solutions of PDE (1.2) which are neither invariant solutions

of admitted point symmetries of the potential equation (1.5) nor nonclassical solutions of

ut =
Df
Dx

.)

From the nature of the invariant surface condition (1.23), without loss of generality, two

cases arise: τ≡ 1; τ≡ 0, ξ ≡ 1. Equation (1.23), and its differential consequences, introduce

additional relationships between the derivatives of v beyond those used to find the point

symmetries of the potential equation (1.5). For any choice of (ξ(x, t, v), τ(x, t, v), ζ(x, t, v)),

(1.12) leaves invariant (1.23). Consequently, the solutions of (1.5), arising from the non-

classical symmetries of the augmented system, include all invariant solutions of potential

equation (1.5) arising from the point symmetries of potential equation (1.5). One can

show that the compatibility of the completely augmented system consisting of the poten-

tial equation (1.5), the invariant surface condition (1.23), and the differential consequences

of both (1.5) and (1.23), leads to the determining equations of the Nonclassical Method

(when applied to the completely augmented system) for (ξ(x, t, v), τ(x, t, v), ζ(x, t, v)).

Definition 1.3 A solution of PDE (1.2) obtained from a nonclassical symmetry with τ≡ 1

through either Algorithm I or Algorithm II is called a nonclassical potential solution of

(1.2) if it is neither a nonclassical solution of (1.2) arising from a nonclassical symmetry

with τ≡ 1 nor a solution obtained from an invariant solution of an admitted point

symmetry of the given PDE (1.2), the potential system (1.4a,b) or the potential equation

(1.5).

Nonclassical potential symmetries arising from the Potential System Approach

(Algorithm I) were first discussed in Bluman & Shtelen [9] and Saccomandi [18],

but neither of these papers exhibited nonclassical potential solutions for specific

PDEs. Nonclassical potential symmetries arising from the Potential Equation Approach
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(Algorithm II) were first discussed in Gandarias & Bruzón [13], where no nonclassical

potential solutions were found for a family of Cahn–Hilliard equations. In Clarkson &

Priestley [11], using Algorithm I, no nonclassical potential solutions were found for one

of the infinite number of potential systems that arise for a shallow water wave equation

written in a potential form. Several papers discuss algorithmic procedures for obtaining

nonclassical symmetries through symbolic computation (see, for example, Clarkson &

Mansfield [10] and Mansfield et al. [15]).

1.4 A prototypical example: the nonlinear heat conduction equation

For the rest of this paper, as a prototypical example, we consider the nonlinear heat

conduction equation

ut = (K(u)ux)x, K ′(u)� 0, (1.28)

which is already in conservation law form. Correspondingly, we have the potential system

vx = u,

vt =K(u)ux
(1.29)

and the potential equation

vt = K(vx)vxx. (1.30)

In § 2, for arbitrary K(u), we set up the determining equations for nonclassical sym-

metries of the potential equation (1.30), the potential system (1.29), and the given scalar

PDE (1.28), respectively, for τ≡ 1 and for τ≡ 0, ξ ≡ 1. When τ≡ 1, we show that for

the potential equation (1.30) to admit nonclassical potential symmetries it is neces-

sary that K(u) be a restricted function depending on at most 11 parameters, whereas

the potential system (1.29) admits nonclassical potential symmetries for arbitrary K(u).

The determining equations for nonclassical symmetries of the scalar PDE (1.28) appear

in Arrigo & Hill [2] and those for the potential system (1.29) appear in Bluman &

Shtelen [9].

In § 3 and § 4, we consider the case where K(u) = 1
u2 + u

for τ≡ 1. In § 3.1, we show that

the scalar PDE (1.28) only admits nonclassical symmetries which are derivable from its

admitted point symmetries. For the corresponding potential equation (1.30) and potential

system (1.29), in § 3.2 we list the point symmetries found in Bluman & Kumei [7],

Bluman et al. [8] and Akhatov et al. [1], and in § 3.3 we derive special solution classes of

nonclassical symmetries.

In § 4, we obtain solutions of the potential equation (1.30) resulting from a particular

subclass of the nonclassical symmetries found in § 3.2. We consider one of these solutions

and compare it with all invariant solutions arising from admitted point symmetries of the

potential equation (1.30) and the potential system (1.29). Through the comparisons we

show that this considered solution yields a nonclassical solution of the potential equation

(1.30) and a nonclassical potential solution of the scalar PDE (1.28) for K(u) = 1
u2 + u

.

In § 5, we summarize the new results in this paper. We show how our work can be

extended to wide classes of higher order PDEs. We also list some important remarks,

including comments on related work in Gandarias [12].
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2 Determining equations for nonclassical symmetries of the nonlinear heat conduction

equation for arbitrary K(u)

2.1 Determining equations for nonclassical symmetries of the potential equation (1.30)

τ≡ 1

The Nonclassical Method applied to the potential equation (1.30) yields the determining

equation for nonclassical symmetries:

[
−ξξvv

3
x + (ξvζ − ξξx + ξζv)v

2
x + (ξxζ − ζζv + ξζx)vx − ζζx

]
K ′(vx)

+
[
−2ξξvv

2
x + (2ξvζ − 2ξξx − ξt)vx + 2ζξx + ζt

]
K(vx)

+
[
ξvvv

3
x + (2ξxv − ζvv)v

2
x + (ξxx − 2ζxv)vx − ζxx

]
K2(vx) = 0. (2.1)

Since the determining equation (2.1) must hold for all values of x, t, v and vx, it follows

that K(u) =K(vx) must satisfy a first order Bernoulli equation (with variable coefficients)

of the form

(
A1v

3
x + A2v

2
x + A3vx + A4

)
K ′(vx) +

(
B1v

2
x + B2vx + B3

)
K(vx)

+
(
C1v

3
x + C2v

2
x + C3vx + C4

)
K2(vx) = 0 (2.2)

for some constants Ai, Bj , Ck to be determined. Consequently, K(u) depends at most on

11 parameters.

With the aid of symbolic computation, we eliminate K ′(vx) through multiplying (2.1)

by (A1v
3
x +A2v

2
x +A3vx +A4) and (2.2) by (−ξξvv

3
x + (ξvζ − ξξx + ξζv)v

2
x + (ξxζ − ζζv +

ξζx)vx − ζζx), respectively, to obtain

{
(A1ξvv + C1ξξv)v

6
x + [A1(2ξxv − ζvv) + A2ξvv − C1(ξvζ − ξξx + ξζv) + C2ξξv]v

5
x

+ [A1(ξxx − 2ζxv) + A2(2ξxv − ζvv) + A3ξvv − C1(ξxζ − ζζv + ξζx) − C2(ξvζ − ξξx + ξζv)

+C3ξξv]v
4
x + [−A1ζxx + A2(ξxx − 2ζxv) + A3(2ξxv − ζvv) + A4ξvv + C1ζζx

−C2(ξxζ − ζζv + ξζx) − C3(ξvζ − ξξx + ξζv) + C4ξξv]v
3
x + [−A2ζxx + A3(ξxx − 2ζxv)

+A4(2ξxv − ζvv) + C2ζζx − C3(ξxζ − ζζv + ξζx) − C4(ξvζ − ξξx + ξζv)]v
2
x

+ [−A3ζxx + A4(ξxx − 2ζxv) + C3ζζx − C4(ξxζ − ζζv + ξζx)]vx + (C4ζζx − A4ζxx)
}
K(vx)

+
{
(B1 − 2A1)ξξvv

5
x + [A1(2ξvζ − 2ξξx − ξt) − 2A2ξξv − B1(ξvζ − ξξx + ξζv) + B2ξξv]v

4
x

+ [A1(2ξxζ + ζt) + A2(2ξvζ − 2ξξx − ξt) − 2A3ξξv − B1(ξxζ − ζζv + ξζx)

−B2(ξvζ − ξξx + ξζv) + B3ξξv]v
3
x + [A2(2ξxζ + ζt) + A3(2ξvζ − 2ξξx − ξt)

− 2A4ξξv + B1ζζx − B2(ξxζ − ζζv + ξζx) − B3(ξvζ − ξξx + ξζv)]v
2
x

+ [A3(2ξxζ + ζt) + A4(2ξvζ − 2ξξx − ξt) + B2ζζx − B3(ξxζ − ζζv + ξζx)]vx

+ [A4(2ξxζ + ζt) + B3ζζx]
}

= 0. (2.3)

Equation (2.3) is an expression of the form

(
α1v

6
x + α2v

5
x + α3v

4
x + α4v

3
x + α5v

2
x + α6vx + α7

)
K(vx)

+ β1v
5
x + β2v

4
x + β3v

3
x + β4v

2
x + β5vx + β6 = 0, (2.4)
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where each αi and βj is the coefficient of the corresponding term of (2.3). From (2.4), two

possible cases arise according to whether or not
∑7

i=1 α
2
i ≡ 0.

Case I.
∑7

i=1 α
2
i ≡ 0.

Here it must follow that βj ≡ 0 (j = 1, 2, . . . , 6). Then (2.4) splits into the determining

equations

A1ξvv + C1ξξv = 0, (2.5a)

A1(2ξxv − ζvv) + A2ξvv − C1(ξvζ − ξξx + ξζv) + C2ξξv = 0, (2.5b)

A1(ξxx − 2ζxv) + A2(2ξxv − ζvv) + A3ξvv − C1(ξxζ − ζζv + ξζx)

−C2(ξvζ − ξξx + ξζv) + C3ξξv = 0, (2.5c)

−A1ζxx + A2(ξxx − 2ζxv) + A3(2ξxv − ζvv) + A4ξvv + C1ζζx

−C2(ξxζ − ζζv + ξζx) − C3(ξvζ − ξξx + ξζv) + C4ξξv = 0, (2.5d)

−A2ζxx + A3(ξxx − 2ζxv) + A4(2ξxv − ζvv) + C2ζζx

−C3(ξxζ − ζζv + ξζx) − C4(ξvζ − ξξx + ξζv) = 0, (2.5e)

−A3ζxx + A4(ξxx − 2ζxv) + C3ζζx − C4(ξxζ − ζζv + ξζx) = 0, (2.5f)

−A4ζxx + C4ζζx = 0, (2.5g)

(B1 − 2A1)ξξv = 0, (2.5h)

A1(2ξvζ − 2ξξx − ξt) − 2A2ξξv − B1(ξvζ − ξξx + ξζv) + B2ξξv = 0, (2.5i)

A1(2ξxζ + ζt) + A2(2ξvζ − 2ξξx − ξt) − 2A3ξξv − B1(ξxζ − ζζv + ξζx)

−B2(ξvζ − ξξx + ξζv) + B3ξξv = 0, (2.5j)

A2(2ξxζ + ζt) + A3(2ξvζ − 2ξξx − ξt) − 2A4ξξv + B1ζζx

−B2(ξxζ − ζζv + ξζx) − B3(ξvζ − ξξx + ξζv) = 0, (2.5k)

A3(2ξxζ + ζt) + A4(2ξvζ − 2ξξx − ξt) + B2ζζx − B3(ξxζ − ζζv + ξζx) = 0, (2.5l)

A4(2ξxζ + ζt) + B3ζζx = 0. (2.5m)

Case II.
∑7

i=1 α
2
i � 0.

Here (2.4) can be rewritten in the form

K(vx) = − β1v
5
x + β2v

4
x + β3v

3
x + β4v

2
x + β5vx + β6

α1v6
x + α2v5

x + α3v4
x + α4v3

x + α5v2
x + α6vx + α7

. (2.6)

With the aid of symbolic computation, we substitute (2.6) into (2.2) to obtain a

polynomial of degree 13 in vx. After equating to zero the coefficients of like powers

of vx, equation (2.2) splits into an overdetermined nonlinear system of 14 PDEs for

the unknowns ξ(x, t, v) and ζ(x, t, v) and undetermined constants Ai, Bj , Ck . In general,

most of these 14 PDEs involve many terms. For example, the coefficient of v2
x yields the

determining equation

[A4(2ξxζ + ζt) + B3ζζx]{C2[A4(2ξxζ + ζt) + B3ζζx] + 2C3[A3(2ξxζ + ζt) + B2ζζx

+A4(2ξvζ − 2ξξx − ξt) − B3(ξxζ − ζζv + ξζx)] + 2C4[A2(2ξxζ + ζt) − 2A4ξξv

+A3(2ξvζ − 2ξξx − ξt) + B1ζζx − B2(ξxζ − ζζv + ξζx) − B3(ξvζ − ξξx + ξζv)]
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−B1(−A4ζxx +C4ζζx) + (A2 − B2)[−A3ζxx +A4(ξxx − 2ζxv) +C3ζζx

−C4(ξxζ − ζζv + ξζx)]+ (2A3 − B3)[−A2ζxx + A3(ξxx − 2ζxv) + A4(2ξxv − ζvv) + C2ζζx

−C3(ξxζ − ζζv + ξζx)−C4(ξvζ − ξξx + ξζv)] + 3A4[−A1ζxx + A2(ξxx − 2ζxv)

+A3(2ξxv − ζvv) + A4ξvv + C1ζζx −C2(ξxζ − ζζv + ξζx) −C3(ξvζ − ξξx + ξζv)

+C4ξξv]} + [A3(2ξxζ + ζt) +A4(2ξvζ − 2ξξx − ξt)+B2ζζx

−B3(ξxζ − ζζv + ξζx)]{C4[A3(2ξxζ + ζt) + A4(2ξvζ − 2ξξx − ξt) + B2ζζx

−B3(ξxζ − ζζv + ξζx)] − (A2 + B2)(−A4ζxx +C4ζζx) −B3[−A3ζxx +A4(ξxx − 2ηxv)

+C3ζζx−C4(ξxζ − ζζv + ξζx)] + A4[−A2ζxx + A3(ξxx − 2ζxv) + A4(2ξxv − ζvv) + C2ζζx

−C3(ξxζ − ζζv + ξζx) − C4(ξvζ − ξξx + ξζv)] − (A2 + B2)(−A4ζxx + C4ζζx)}
+ [A2(2ξxζ + ζt) + A3(2ξvζ − 2ξξx − ξt) − 2A4ξξv + B1ζζx − B2(ξxζ − ζζv + ξζx)

−B3(ξvζ − ξξx + ξζv)]{−(2A3 + B3)(−A4ζxx + C4ζζx) − A4[−A3ζxx + A4(ξxx − 2ζxv)

+C3ζζx − C4(ξxζ − ζζv + ξζx)]} − 3A4(−A4ζxx + C4ζζx)[A1(2ξxζ + ζt)

− 2A3ξξv +A2(2ξvζ − 2ξξx − ξt) − B1(ξxζ − ζζv + ξζx)

−B2(ξvζ − ξξx + ξζv) + B3ξξv] = 0. (2.7)

τ≡ 0, ξ ≡ 1

Here the invariant surface condition (1.23) becomes vx = ζ(x, t, v). The corresponding

determining equation for nonclassical symmetries is given by

(
2ζζxζv + ζ2ζ2

v + ζ2
x

)
K ′(ζ) + (ζ2ζvv + 2ζζxv + ζxx)K(ζ) − ζt = 0. (2.8)

In principle, any K(u) =K(ζ) yields solutions of (2.8). In practice, one must use ansatzes

for ζ(x, t, v) to seek particular solutions.

2.2 Determining equations for nonclassical symmetries of the potential system (1.29)

τ≡ 1

The Nonclassical Method applied to the potential system (1.29) yields the system of two

determining equations for nonclassical symmetries:

1

K(u)
(ζ − uξ)(ζu − uξu) + u(ζv − ξx) − ξvu

2 − η + ζx = 0, (2.9a)

(ζu − uξu)

[
η − 1

K(u)
ξ(ζ − uξ)

]
+ (ζv − uξv)(ζ − uξ) − (K(u)ηv + ξt)u

−K(u)ηx +
1

K(u)
(ζ − uξ)[K(u)ξx + K(u)ξvu − K ′(u)η − K(u)ηu]

+
1

K(u)
ξu(ζ − uξ)2 + ζt = 0. (2.9b)

The determining equations (2.9a,b) first appeared in Saccomandi [18] and are clearly

underdetermined since they involve two equations in the three unknowns ξ(x, t, u, v), η(x, t,

u, v) and ζ(x, t, u, v). Consequently, any K(u) yields, in principle, an infinite number of

nonclassical symmetries. We have been unsuccessful in finding a specific solution yielding

a nonclassical symmetry that is not derivable from a point symmetry admitted by the
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potential system (1.29). The point symmetries admitted by the potential system (1.29) are

given in Bluman & Kumei [7] and Bluman et al. [8].

τ≡ 0, ξ ≡ 1

Here it is easy to show that the Nonclassical Method only yields solutions of the potential

system (1.29) of the form u= f(x), i.e. invariant solutions obtained from the invariance of

(1.29) under translations in t.

2.3 Determining equations for nonclassical symmetries of the given scalar PDE (1.28)

τ≡ 1

The Nonclassical Method applied to the given nonlinear heat conduction equation (1.28)

yields the following four determining equations for the unknowns ξ(x, t, u) and η(x, t, u):

K ′(u)ξu − K(u)ξuu = 0, (2.10a)

[K(u)K ′′(u) − K ′2(u)]η + K(u)K ′(u)ηu + 2K(u)ξξu + K2(u)(ηuu − 2ξxu) = 0, (2.10b)

K(u)ξt − 2K(u)ξuη − K ′(u)ξη + K2(u)(2ηxu − ξxx) + 2K(u)ξξx + 2K(u)K ′(u)ηx = 0, (2.10c)

K ′(u)η2 − 2K(u)ηξx + K2(u)ηxx − K(u)ηt = 0. (2.10d)

τ≡ 0, ξ ≡ 1

Here the Nonclassical Method yields the determining equation

K(u)(ηxx + 2ηηxu + η2ηuu) + K ′′(u)η3 + K ′(u)(3ηηx + 2η2ηu) − ηt = 0 (2.11)

for the unknown η(x, t, u). The systems of determining equations (2.10a–d) and (2.11) first

appeared in Bluman & Shtelen [9]. In principle, any K(u) yields solutions of (2.11). In

practise, one must use ansatzes for η(x, t, u) to seek particular solutions.

3 The Case K(u) = 1
u2 + u

For the rest of this paper, we consider symmetries of (1.28)–(1.30) with the conductivity

K(u) = 1
u2 + u

.

3.1 Nonclassical symmetries of the scalar equation (1.28) when τ≡ 1

For K(u) = 1
u2 + u

, one can show that the only solution of the nonclassical symmetry

determining equations (2.10a–d) for the nonlinear heat conduction equation (1.28) is

given by ξ = c3x+ c2

2c3t+ c1
, ζ = 0. This corresponds to the nonclassical symmetry

Y =
c3x + c2

2c3t + c1

∂

∂x
+

∂

∂t
, (3.1)

where c1, c2 and c3 are arbitrary constants with c2
1 + c2

3 � 0.

It is easy to see that the nonclassical symmetry (3.1) is derivable from the invariance

of PDE (1.28) under the three-parameter Lie group of translations in x, translations in t

and scalings x → αx, t → α2t. Hence the Nonclassical Method applied to the scalar PDE

(1.28), when τ≡ 1, yields no nonclassical solutions of (1.28).
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3.2 Point symmetries of the potential equation (1.30) and potential system (1.29)

By applying the classical Lie’s algorithm to (1.30), one obtains the point symmetries of

(1.30):

X1 =
∂

∂v
, X2 =

∂

∂x
, X3 =

∂

∂t
, X4 = x

∂

∂x
+ 2t

∂

∂t
+ v

∂

∂v
,

X5 = v
∂

∂x
− t

∂

∂t
− v

∂

∂v
, (3.2)

which can be rewritten in the five-parameter form

X = (a2 + a4x + a5v)
∂

∂x
+ [a3 + (2a4 − a5)t]

∂

∂t
+ [a1 + (a4 − a5)v]

∂

∂v
, (3.3)

where each ai (i= 1, 2, . . . , 5) is an arbitrary constant [7,1].

Lie’s algorithm applied to the potential system (1.29) yields the admitted point sym-

metries ([7], [8])

X1 =
∂

∂v
, X2 =

∂

∂x
, X3 =

∂

∂t
, X4 = x

∂

∂x
+ 2t

∂

∂t
+ v

∂

∂v
,

X5 = v
∂

∂x
− t

∂

∂t
− v

∂

∂v
− (u2 + u)

∂

∂u
. (3.4)

By comparing the infinitesimal generators (3.2) and (3.4), one sees that the resulting

invariant solutions of (1.30) and (1.29), respectively, yield the same solutions of the given

nonlinear heat conduction equation (1.28). Moreover, by comparing the infinitesimal

generators (3.3) and (3.1), we see that the invariant solutions of the potential equation

(1.30) obtained from (3.3) include as a subclass all solutions of the given scalar PDE (1.28)

obtained as invariant solutions from its admitted point symmetries equivalent to (3.1).

3.3 Special classes of nonclassical symmetries of the potential equation (1.30)

In general, it is difficult to find all solutions (ξ(x, t, v, Ai, Bj , Ck), ζ(x, t, v, Ai, Bj , Ck)) of the

overdetermined nonlinear system of PDEs (2.5a–m). Since system (2.5a–m) is invariant

under translations in x, t and v, we seek corresponding invariant solutions of system

(2.5a–m) of the form (ξ(βv + γx + λt + c), ζ(βv + γx + λt + c)). Next we consider the

following solutions of (2.5a,g):

ξ = ξ1 = b tanh[b(βv + γx + λt) + c], (3.5a)

ξ = ξ2 = b coth[b(βv + γx + λt) + c], (3.5b)

ζ = ζ1 = αb tanh[b(βv + γx + λt) + c], (3.6a)

ζ = ζ2 = αb coth[b(βv + γx + λt) + c] (3.6b)

with the undetermined constants A1 = −β, C1 =−2β2, A4 =−α2γ, C4 = 2αγ2. The constants

α, b, β, γ, λ, c are to be determined.
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The substitution of the solution pairs (ξ1, ζ1), (ξ2, ζ1), (ξ1, ζ2) and (ξ2, ζ2), respectively,

into equation (2.5m) yields the only possible solution pairs (ξ1, ζ1) and (ξ2, ζ2) with

λ= 0, B3 = 2αγ. Then the remaining ten equations of (2.5a–m) yield the solution pairs

(ξ1, ζ1) = (b tanh[b(βv + γx) + c], αb tanh[b(βv + γx) + c]), (3.7)

(ξ2, ζ2) = (b coth[b(βv + γx) + c], αb coth[b(βv + γx) + c]) (3.8)

with the undetermined constants Ai, Bj , Ck given by

A1 = −β, A2 = 2αβ − γ, A3 = 2αγ − α2β, A4 = −α2γ,

B1 = −2β, B2 = 2αβ − 2γ, B3 = 2αγ,

C1 = −2β2, C2 = 2αβ2 − 4βγ, C3 = −2γ2 + 4αβγ, C4 = 2αγ2. (3.9)

The substitution of (3.7) or (3.8) with (3.9) into (2.2) yields

(vx − α)K ′(vx) + 2K(vx) + (2βvx + 2γ)K2(vx) = 0. (3.10)

It is easy to see that the general solution of (3.10) is given by

K(vx) =
1

Av2
x + Bvx + C

, (3.11)

where

B = −2Aα − 2β, C = Aα2 − γ + αβ (3.12)

and A is an arbitrary constant.

If A= 1, α= −2γ, β = 2γ − 1
2
, then we see that the potential equation (1.30) with

K(vx) =
1

v2
x + vx

(3.13)

admits two nonclassical symmetries

Y1 =b tanh
[
b
(
2γ− 1

2

)
v+bγx+c

] ∂

∂x
+

∂

∂t
−2γb tanh

[
b
(
2γ − 1

2

)
v+bγx+c

] ∂

∂v
, (3.14a)

Y2 =b coth
[
b
(
2γ− 1

2

)
v+bγx+c

] ∂

∂x
+

∂

∂t
−2γb coth

[
b
(
2γ − 1

2

)
v+bγx+c

] ∂

∂v
. (3.14b)

4 Comparisons of solutions for the case K(u) = 1
u2 + u

In this section, we obtain solutions of the potential equation (1.30) resulting from the

nonclassical symmetries (3.14a,b). We consider one of these solutions and compare it

with all invariant solutions arising from admitted point symmetries of the potential

equation (1.30). Through these comparisons we show that this considered solution yields

a nonclassical solution of the potential equation (1.30) and a nonclassical potential

solution of the scalar PDE (1.28) for K(u) = 1
u2 + u

.
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4.1 Solutions of the potential equation (1.30) obtained from the nonclassical

symmetries (3.14a,b)

Now consider the nonclassical symmetries (3.14a,b) with b � 0, γ � 0, 1
2
. (One can show

that if b= 0, γ= 0, or γ= 1
2
, then the corresponding nonclassical symmetries only yield

classical solutions of the potential equation (1.30), i.e. invariant solutions obtained from

point symmetries admitted by (1.30).) The characteristic equations corresponding to the

invariant surface conditions for the nonclassical symmetries (3.14a,b), respectively, are

given by

dx

b tanh
[
b
(
2γ − 1

2

)
v + bγx + c

] =
dt

1
=

dv

−2γb tanh
[
b
(
2γ − 1

2

)
v + bγx + c

] . (4.1a)

dx

b coth
[
b
(
2γ − 1

2

)
v + bγx + c

] =
dt

1
=

dv

−2γb coth
[
b
(
2γ − 1

2

)
v + bγx + c

] . (4.1b)

The resulting similarity variable and similarity forms are given by

∣∣ sinh
[
b
(
2γ − 1

2

)
v + bγx + c

]∣∣ = eb
2(−4γ2+2γ)tF(Z), Z = v + 2γx, (4.2a)

cosh
[
b
(
2γ − 1

2

)
v + bγx + c

]
= eb

2(−4γ2+2γ)tF(Z), Z = v + 2γx. (4.2b)

The substitution of (4.2a) or (4.2b) into the potential equation (1.30) with K(vx) = 1
v2
x + vx

leads to F(Z) satisfying the ODE

F ′′(Z) − 1

4
b2F(Z) = 0. (4.3)

The solution of (4.3) yields two families of solutions of the potential equation (1.30):

∣∣sinh
[
b
(
2γ − 1

2

)
v + bγx + c

]∣∣
= eb

2(−4γ2+2γ)t
[
b1 sinh

(
1
2
bv + bγx

)
+ b2 cosh

(
1
2
bv + bγx

)]
, (4.4a)

cosh
[
b
(
2γ − 1

2

)
v + bγx + c

]
= eb

2(−4γ2+2γ)t
[
δ1 sinh

(
1
2
bv + bγx

)
+ δ2 cosh

(
1
2
bv + bγx

)]
, (4.4b)

where b, c, γ, b1, b2, δ1, δ2 are arbitrary constants with b� 0, γ� 0, 1
2
, b2 > |b1|, δ2 > |δ1|.

4.2 Classical solutions of the potential equation (1.30)

We now find the invariant solutions of the potential equation (1.30) resulting from its

admitted five-parameter point symmetry (3.3). The characteristic system for the corres-

ponding invariant surface condition is given by

dx

a2 + a4x + a5v
=

dt

a3 + (2a4 − a5)t
=

dv

a1 + (a4 − a5)v
. (4.5)
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Table 1. Results table

Case Similarity variable Similarity form of solution ODE satisfied by F(Z)

I:

a4 � 0,

a5 � a4 ,

a5 � 2a4

Z =(v + x − c1

− c1 − c2)(v − c1)
α

(v − c1)
(1−α) = (t − c3)F(Z),

c1 =
a1

a5−a4
,

c2 = − a2+a1c1
a4

,

c3 =
a3

a5−2a4
, α=

a4
a5−a4

� 0, 1

F(Z)= F′ (Z)
(1−α)F(Z)−αZF′ (Z)

[α(1 − α) + αZ F′′ (Z)
F′ (Z)

− α(1 − α)Z F′ (Z)
F(Z) ] + (1 − α) F

′′ (Z)
F′ (Z)

+ 2α F′ (Z)
F(Z)

II:

a2 � −a1 ,

a4 = 0,

a5 � 0

Z =(v − c1)

× exp[c2(v + x − c1)]

v − c1 = (t − c3)F(Z), c1 =
a1
a5

,

c2 =
a5

a1+a2
, c3 =

a3
a5

c2ZF(Z)F′′ (Z)

F′ (Z)[F(Z)−ZF′ (Z)]
+

c2
F(Z) [F(Z) + ZF ′(Z)]

=F(Z)

III:

a2 = −a1 ,

a4 = 0,

a5 � 0

Z = v + x v − c1 = (t − c2)F(Z), c1 =
a1
a5

,

c2 =
a3
a5

F ′′(Z) − F(Z)F ′(Z) = 0, F ′(Z) � 0

IV:

a3 � 0,

a4 � 0,

a5 = 2a4

Z =(v − c1)(v + x

− c1 − c2)

v= c1 + ec3 tF(Z), c1 =
a1
a4
,

c2 = − 2a1+a2
a4

,

c3 = − a4
a3

F′′ (Z)F(Z)
F′ (Z)[F(Z)−ZF′ (Z)]

+ 2F′(Z)
F(Z) − c3 = 0

V:

a3 = 0,

a4 � 0,

a5 = 2a4

Z = t (v − c1)(v + x − c1 − c2)=F(Z),

c1 =
a1
a4
, c2 = −2a1+a2

a4

F ′(Z) = −2

VI:

a1 � 0,

a4 � 0,

a5 = a4

Z = c1v

− log |v + x + c2|
ec1v = (t + c3)F(Z), c1 =

a4
a1

,

c2 =
a1+a2
a4

, c3 =
a3
a4

c1e
Z

[
F(Z)F′′ (Z)

F′2(Z)
+ F′ (Z)

F(Z)

(
1 − F(Z)

F′ (Z)

)2

− 1

]

=F(Z)
(
1 − F(Z)

F′ (Z)

)
, F ′(Z) �F(Z)

VII:

a1 = 0,

a4 � 0,

a5 = a4

Z = v v= (t + c2)F(Z) − x − c1 ,

c1 =
a2
a4

, c2 =
a3
a4

F ′′(Z) − F(Z)F ′(Z) = 0, F ′(Z) � 0

VIII:
a1a2a3 � 0,

a2 � −a1 ,

a4 = a5 = 0

Z = a2v − a1x a3v= a1t + F(Z) a2
3F

′′(Z) − (a1 + a2)F
′2(Z) + a3F

′(Z) = 0,

F ′(Z) � a3
a1+a2

, 0

IX:

a1 = a4

= a5 = 0,

a2a3 � 0

Z = v a3x= a2t + F(Z) a3F
′′(Z) − a2F

′(Z) − a2a3 = 0,

F ′(Z) � −a3

X:

a2 = a4

= a5 = 0,

a1a3 � 0

Z = x a3v= a1t + F(Z) a2
3F

′′(Z) − a1F
′2(Z) − a1a3F

′(Z) = 0,

F ′(Z) � −a3 , 0

Various cases need to be considered that depend on the nature of the constants

ai (i= 1, 2, . . . , 5). The results are summarized in Table 1.

In all other cases, the solutions are only of the from v= c1x + c2 with c1(c1 + 1) � 0

and hence are not considered.
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4.3 Comparison of solutions of the potential equation (1.30) obtained from nonclassical

symmetries and point symmetries

We now show that the solutions (4.4a) include at least one nonclassical solution of the

potential equation (1.30), i.e. we obtain a solution of (1.30) that does not arise as an

invariant solution for any point symmetry admitted by (1.30). In particular, in (4.4a), let

b= 2, γ= 1, c= 0, b1 = 0, b2 = 1. Then we obtain the solution

t = − 1
8
[log | sinh(3v + 2x)| − log(cosh(v + 2x))] (4.6)

of the potential equation (1.30). The proof that the solution (4.6) is a nonclassical solution

of the potential equation (1.30) (and hence a nonclassical potential solution of the given

scalar PDE (1.28)) is given below. The proof involves showing that the solution (4.6)

cannot be obtained from any of the invariant solutions found in § 4.2.

4.3.1 Comparison of (4.6) and Case I

From Case I, we have

x = Z(v − c1)
−α − v + c1 + c2, t =

(v − c1)
1−α

F(Z)
+ c3, α� 0, 1. (4.7)

The substitution of (4.7) into (4.6) yields

8(v − c1)
1−α

F(Z)
+ 8c3 + log | sinh(v + 2Z(v − c1)

−α + 2c1 + 2c2)|

− log[cosh(v − 2Z(v − c1)
−α − 2c1 − 2c2)] = 0. (4.8)

The invariant solution in Case I includes the solution (4.6) if and only if there exist some

constants α, c1, c2, c3 such that equation (4.8) holds for all v and Z . Two cases must be

considered, depending on the sign of α − 1.

4.3.1.1 α < 1

Let v → +∞ in (4.8). Then the l.h.s. of (4.8) ∼ 8v1−α

F(Z)
as v → +∞, which is impossible.

4.3.1.2 α > 1

Let v → +∞ in (4.8). Then the l.h.s. of (4.8) ∼ 8c3 as v → +∞, which leads to c3 = 0. Thus

(4.8) reduces to

8

F(Z)
+

log | sinh(v + y)| − log[cosh(v − y)]

(v − c1)1−α
= 0, (4.9)

where y= 2Z(v − c1)
−α + 2c1 + 2c2, which must hold for some constants α, c1, c2, for all

v and Z . Now let v → +∞ in (4.9). Then the l.h.s. of (4.9) ∼ 8
F(Z)

as v → +∞, which is

impossible.

The arguments to show that the other nine cases arising in Table 1 all yield similarity

solutions distinct from (4.6) are similar to those for Case I. In Cases II–V, one compares

the solutions as v → +∞. In Case VI, one does the comparison as v → −∞ if c1 > 0; as

v → +∞ if c1 < 0. In Case VII, one compares the solutions as x → +∞. In Case VIII, for

c3c4(c3 − c4) > 0, one first compares the solutions as v → +∞ and then compares them
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separately as v → −∞ and x → −∞; for c3c4(c3 −c4) < 0, one first compares the solutions

as v → −∞ and then compares them separately as v → +∞ and x → +∞. In Case IX,

one compares the solutions as x → +∞. Finally, in Case X, one does the comparison as

x → +∞ if c3 > 0; as x → −∞ if c3 < 0.

Thus, we have completed the proof that the solution (4.6) of the potential equation

(1.30) is a nonclassical solution of (1.30) and a nonclassical potential solution of the given

nonlinear heat conduction equation (1.28) with K(u) = 1
u2+u

. In a similar manner, one can

prove that the solutions (4.4b) include at least one nonclassical potential solution of the

given nonlinear heat conduction equation (1.28) with K(u) = 1
u2+u

.

5 Concluding remarks and important extensions to other PDEs

In this paper, we have used the nonlinear heat conduction equation as a prototypical

example to show that if a given second order scalar PDE is in conservation law form, then

one can systematically obtain new solutions by applying the Nonclassical Method to a

related potential equation. Such solutions, called nonclassical potential solutions, cannot

be obtained as invariant solutions of admitted point symmetries of either the given scalar

PDE or the related potential equation, or through the Nonclassical Method (τ≡ 1) applied

to the given scalar PDE. We denote the Nonclassical Method (τ≡ 1) applied to a related

potential equation as the Nonclassical Potential Equation Method (NPEM).

5.1 Important extensions to other types of PDEs

One can extend the NPEM to a higher order PDE of the form

∂nu

∂tn
=

D

Dx
(f(x, t, u, ∂u, . . . , ∂Nu)), (5.1)

where ∂ku denotes the kth order partial derivatives of u. Here it is easy to show that PDE

(5.1) is equivalent to the related potential equation given by

∂nw

∂tn
= [f(x, t, u, ∂u, . . . , ∂Nu)]|u=wx

(5.2)

for some potential variable w. Moreover, if w=φ(x, t) solves (5.2), then u=φx(x, t)

solves (5.1).

More generally, if PDE (5.1) is of the form

∂nu

∂tn
=

Dm

Dxm
(f(x, t, u, ∂u, . . . , ∂Nu)) +

m−1∑
k=1

qk∑
j=0

Akj(t)
∂k+ju

∂xk∂tj
, (5.3)

then one can show that it is also equivalent to each of the m related potential equations

∂nw

∂tn
=

[
Dm−i

Dxm−i
(f(x, t, u, ∂u, . . . , ∂Nu))

]∣∣∣∣
u= ∂iw

∂xi

+

m−1∑
k=1

qk∑
j=0

Akj(t)
∂k+jw

∂xk∂tj
, (5.4)

i= 1, 2, . . . , m. Moreover, if w=φi(x, t) solves (5.4), then u= ∂iφi(x,t)
∂xi

solves (5.3),

i= 1, 2, . . . , m.
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As a first example, consider the nonlinear heat conduction equation (1.28), which can

be written in the form

∂u

∂t
=

∂2

∂x2
(L(u)) =

∂

∂x
(K(u)ux), (5.5)

where L(u) =
∫ u

K(s)ds. Equation (5.5) yields potential systems

vx = u, (5.6a)

vt =
∂

∂x
(L(u)) = K(u)ux (5.6b)

and

vx = u, (5.7a)

wx = v, (5.7b)

wt = L(u). (5.7c)

The substitution of (5.6a) into (5.6b) yields the first equivalent potential equation

vt = K(vx)vxx = L′(vx)vxx. (5.8)

If v=φ(x, t) solves the potential equation (5.8), then u=φx(x, t) solves the nonlinear heat

conduction equation (5.5).

The substitution of (5.7b) into (5.7a) yields u=wxx. Hence from (5.7c), we obtain the

second equivalent potential equation [3]

wt = L(wxx). (5.9)

If w=Φ(x, t) solves the potential equation (5.9), then u=Φxx(x, t) solves the nonlinear

heat conduction equation (5.5).

As a second example, consider the Boussinesq equation

utt = auxx + b(u2)xx + cuxxxx =
D2

Dx2
(au + bu2 + cuxx), a, b, c = const. (5.10)

Equation (5.10) yields the equivalent potential systems

vx = ut, (5.11a)

vt =
D

Dx
(au + bu2 + cuxx) (5.11b)

and

wt = v, (5.12a)

wx = u, (5.12b)

vt =
D

Dx
(au + bu2 + cuxx). (5.12c)



258 G. W. Bluman and Z. Yan

The substitution of (5.12a,b) into (5.12c) yields the first equivalent potential equation

wtt = awxx + 2bwxwxx + cwxxxx =
D

Dx
(awx + bw2

x + cwxxx). (5.13)

If w=φ(x, t) solves the potential equation (5.13), then u=φx(x, t) solves the Boussinesq

equation (5.10).

In turn, the first potential equation (5.13) is equivalent to the potential systems

Z (1)
x = wt, (5.14a)

Z
(1)
t = awx + bw2

x + cwxxx (5.14b)

and

Z
(2)
t = Z (1), (5.15a)

Z (2)
x = w, (5.15b)

Z
(1)
t = awx + bw2

x + cwxxx. (5.15c)

The substitution of (5.15a,b) into (5.15c) yields the second equivalent potential equation

Ztt = aZxx + b(Zxx)
2 + cZxxxx (5.16)

with Z =Z (2). If Z =Φ(x, t) solves the potential equation (5.16), then u=Φxx(x, t) solves

the Boussinesq equation (5.10).

Most importantly, any method (numerical, perturbation, or qualitative), in addition to

analytical methods such as the Classical Method and Nonclassical Method, applied to

any one of the m related potential equations (5.4) could yield new results for a given scalar

PDE (5.3) and, mutatis mutandis, for any one of the other related potential equations.

We further remark that one could extend our work to n-dimensional systems of PDEs

with at least one PDE in conservation law form.

5.2 Further remarks

(1) Consider the PDE in conservation law form

∂u

∂t
=

D

Dx
f(x, t, u, ∂u, . . . , ∂Nu). (5.17)

It is important to note that a nonclassical symmetry of the form

Y = ξ(x, t)
∂

∂x
+

∂

∂t
+ ζ(x, t)

∂

∂v
(5.18)

admitted by the related potential equation

vt = [f(x, t, u, ∂u, . . . , ∂Nu)]|u=vx (5.19)

could yield nonclassical potential solutions of (5.17).
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As an example, consider the nonclassical symmetry (3.14a) in Section 3.3 with

γ= 1
4

so that it becomes Y1 = b tanh( b
4
x + c) ∂

∂x
+ ∂

∂t
− 1

2
b tanh( b

4
x + c) ∂

∂v
. One can

show that this nonclassical symmetry yields the nonclassical potential solution

u = − 1
2

+ 1
2
cosh

(
1
4
bx + c

) [
c1 exp

(
1
2
b2t

)
+ sinh2

(
1
4
bx + c

)]−1/2
, (5.20)

with the arbitrary constant c1 � 0, of the nonlinear heat conduction equation (1.28)

with K(u) = 1
u2+u

.

In Gandarias [12], the solution

u =
k1

k
[tanh(k1(x − kt)) − tanh(k1(x + kt))] (5.21)

of the nonlinear heat conduction equation

ut = (u−1ux)x (5.22)

was obtained by a procedure which is equivalent to finding a nonclassical solution

of the related potential equation

vt =
vxx

vx
(5.23)

from its admitted nonclassical symmetry

Y = k
∂

∂x
+

∂

∂t
− 2k1 tanh[k1(x + kt + k2)]

∂

∂v
. (5.24)

The nonclassical symmetry (5.24) results from Case II in § 2.1 (equation (2.6) for

K(u)), which we have not considered further in this paper.

(2) One can show that the purported ‘nonclassical potential symmetries’

Y1 = k
∂

∂x
+

∂

∂t
+ 2 tan(v + kt + k1)

∂

∂v
(5.25a)

and

Y2 = k
∂

∂x
+

∂

∂t
+ 2 tan(x + v + k1)

∂

∂v
(5.25b)

of the nonlinear heat equation (5.22), presented in Gandarias [12], are not nonclas-

sical symmetries of the potential equation (5.23) (and hence are not nonclassical

potential symmetries of the PDE (5.22)). Moreover, the corresponding displayed

‘solutions’ in Gandarias [12] of the potential equation (5.23) are not solutions of

(5.23).

(3) From our work exhibited in § 3.3, one can easily see that the potential equation

(5.23) admits the nonclassical symmetries

Y1 = b tanh
(
− 1

2
bv + bγx + c

)
∂

∂x
+ ∂

∂t
− 2γb tanh

(
− 1

2
bv + bγx + c

)
∂
∂v
, (5.26a)

Y2 = b coth
(
− 1

2
bv + bγx + c

)
∂

∂x
+ ∂

∂t
− 2γb coth

(
− 1

2
bv + bγx + c

)
∂
∂v

(5.26b)
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with b� 0 and γ� 0. Correspondingly, one can find nonclassical potential solutions

of the nonlinear heat conduction equation (5.22) that arise from its nonclassical

potential symmetries (5.26a,b).

(4) For τ≡ 1, the Nonclassical Method is much easier to apply to a potential equation

than to a potential system, unlike the situation when seeking point symmetries for

a potential equation vis-a-vis a potential system.

(5) For K(u) = 1
u2 + u

, the invariant solutions in Cases I-VII in Table I for the admitted

point symmetries (3.3) of the potential equation (1.30) when a5 � 0, are new and in

particular cannot be obtained from the invariance of (1.28) under point symmetries.

(6) By complexifying the parameters in (4.4a), one can obtain the following family of

quasi-periodic solutions of the potential equation (1.30) for K(vx) = 1
v2
x + vx

:

sin
[
b
(
2γ+ 1

2

)
v+bγx+c

]
=eb

2(4γ2 +2γ)t
[
c1 sin

(
1
2
bv−bγx

)
+c2 cos

(
1
2
bv−bγx

)]
, (5.27)

where b, c, γ, c1, c2 are arbitrary real constants with b� 0, γ� 0,− 1
2

and c2
1 + c2

2 � 0.

(7) From our work in § 2.1.1, we see that if the nonlinear heat conduction (1.28) has

a nonclassical potential solution related to its potential equation (1.30), then it is

necessary that the conductivity K(u) satisfy the first order Bernoulli equation

(A1u
3 + A2u

2 + A3u + A4)K
′(u) + (B1u

2 + B2u + B3)K(u)
(5.28)

+ (C1u
3 + C2u

2 + C3u + C4)K
2(u) = 0

for some constants Ai, Bj , Ck .

(8) Asymptotic analysis seems to be an effective tool for comparing solutions.
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